III B.Tech II Semester(R05) Supplementary Examinations, April/May 2011

> ANALYSIS OF LINEAR SYSTEMS
(Electrical \& Electronics Engineering)
(For students of RR regulation readmitted to III B.Tech II Semester R05)
Time: 3 hours

Answer any FIVE questions

Max Marks: 80 All questions carry equal marks $\star \star \star \star \star$

1. (a) Distinguish between translational and rotational mechanical system with suitable examples and develop the analogous relationships between various quantities of these systems.
(b) Develop the force-current analogous circuit for the system shown in figure 1 and hence develop the nodal equations.

2. (a) The transfer function of a system is $G(s)=\frac{2}{(s+1)(s+2)}$ obtain the state variable representation of the systems.
(b) Determine the state transition matrix for the system represented by the characteristic matrix $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 1 \\ 1 & 4 & 1\end{array}\right]$
3. (a) Find the current $\mathrm{i}(\mathrm{t})$ in a series R - L - C circuit comprising of resistor $\mathrm{R}=5 \Omega, \mathrm{~L}=1 \mathrm{H}, \mathrm{C}=\frac{1}{4} \mathrm{~F}$ when the step voltage $3 \mathrm{u}(\mathrm{t}-3)$ is applied to it
(b) Find the response of a series $\mathrm{R}-\mathrm{C}$ circuit with $\mathrm{R}=1 \Omega, \mathrm{C}=2 \mathrm{~F}$ with an impulse voltage of 2δ (t-3) applied across it.
4. (a) State and Explain the graphical interpretation of convolution theorem.
(b) Determine the convolution integral for the functions $\left(e^{-2 t}\right)(\sin 2 \mathrm{t})$
(c) Given that impulse response of a systems is $\frac{s}{s+1}$, find the response for an input of $e^{-2 t}$.
5. A full-wave rectified output voltage, with an input voltage of $230 \mathrm{~V}, 50 \mathrm{~Hz}$, is applied to a series R-L circuit with $\mathrm{R}=2 \Omega, \mathrm{~L}=3.18 \mathrm{mH}$. Find:
(a) Fourier coefficients
(b) RMS value of voltage
(c) RMS value of current
(d) Average power consumed in the circuit and power factor of the load.
6. (a) Find the signal $f(t)$ whose Fourier transform is $F(j \omega)=5 /\left(6+j 5 \omega-\omega^{2}\right)$
(b) Find the Fourier transform of the following functions:
i. $\mathrm{f}(\mathrm{t})=t e^{-a t}$ for $\mathrm{t} \geq 0$
ii. $\mathrm{V}(\mathrm{t})=V_{m} \cos t-\Pi / 2 \leq t \leq \Pi / 2$

$$
=0 \text { elsewhere }
$$

7. (a) Check whether the following polynomial is Hurwitz or not? $H(s)=s^{4}+2 s^{2}+3 s+6$
(b) Find the range of values of 'a' so that $H(s)=s^{4}+s^{3}+a s^{2}+s+3$ is Hurwitz.
8. (a) For the following driving point input impedance, synthesize the realizable impedance with R-L elements using Fosters first form:
$\mathrm{Z}(\mathrm{s})=(\mathrm{s}+2)(\mathrm{s}+4) /(\mathrm{s}+3)(\mathrm{s}+5)$
(b) Synthesis the given function
$Z(s)=2(s+1)(s+5) / s(s+3)$
into two R-C parallel branches and hence determine the values of branches $R_{1}-C_{1}$ and $R_{2}-C_{2}$ and assume $R_{1}=R_{2}$.
