Code :EE3221

Max Marks: 80

III B.Tech II Semester(R05) Supplementary Examinations, April/May 2011 ANALYSIS OF LINEAR SYSTEMS (Electrical & Electronics Engineering) (For students of RR regulation readmitted to III B.Tech II Semester R05)

Time: 3 hours

Answer any FIVE questions All questions carry equal marks

- 1. (a) Distinguish between translational and rotational mechanical system with suitable examples and develop the analogous relationships between various quantities of these systems.
 - (b) Develop the force-current analogous circuit for the system shown in figure 1 and hence develop the nodal equations.

- 2. (a) The transfer function of a system is $G(s) = \frac{2}{(s+1)(s+2)}$ obtain the state variable representation of the systems.
 - (b) Determine the state transition matrix for the system represented by the characteristic matrix $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -2 & 1 \\ 1 & 4 & 1 \end{bmatrix}$
- 3. (a) Find the current i(t) in a series R-L-C circuit comprising of resistor $R = 5\Omega$, L=1H, C= $\frac{1}{4}$ F when the step voltage 3 u(t-3) is applied to it
 - (b) Find the response of a series R-C eircuit with R=1 Ω , C=2F with an impulse voltage of 2 δ (t-3) applied across it.
- 4. (a) State and Explain the graphical interpretation of convolution theorem.
 - (b) Determine the convolution integral for the functions (e^{-2t}) (sin2t)
 - (c) Given that impulse response of a systems is $\frac{s}{s+1}$, find the response for an input of e^{-2t} .
- 5. A full-wave rectified output voltage, with an input voltage of 230 V, 50Hz, is applied to a series R-L circuit with R=2 Ω , L = 3.18mH. Find:
 - (a) Fourier coefficients
 - (b) RMS value of voltage
 - (c) RMS value of current
 - (d) Average power consumed in the circuit and power factor of the load.
- 6. (a) Find the signal f(t) whose Fourier transform is $F(j\omega) = 5/(6+j5\omega-\omega^2)$
 - (b) Find the Fourier transform of the following functions:

i.
$$f(t) = te^{-at}$$
 for $t \ge 0$

ii.
$$V(t) = V_m cost - \Pi/2 \le t \le \Pi/2$$

= 0 elsewhere

- 7. (a) Check whether the following polynomial is Hurwitz or not? $H(s) = s^4 + 2s^2 + 3s + 6$
 - (b) Find the range of values of 'a' so that $H(s) = s^4 + s^3 + as^2 + s + 3$ is Hurwitz.
- (a) For the following driving point input impedance, synthesize the realizable impedance with R-L elements using Fosters first form: Z(s) = (s+2)(s+4)/(s+3)(s+5)
 - (b) Synthesis the given function Z(s) = 2(s+1)(s+5)/s(s+3)into two R-C parallel branches and hence determine the values of branches $R_1 - C_1$ and $R_2 - C_2$ and assume $R_1 = R_2$.

www.firstranker.com